

The Effect of AcrAB-TolC MDR Pump and Media on Susceptibility to Antibiotics

Katherine Chou, Anne Lamsa, Diana Quach, Kit Pogliano and Joe Pogliano The Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California

Abstract

Microbroth dilution, a common method for antibiotic susceptibility testing occurs in rich bacterial media that does not mirror the environment of a patient. Previously, it was shown that a Gram-negative pathogen was susceptible to Azithromycin in RPMI, a common media used to propagate eukaryotic cells, but was resistant in MHB, a nutrient rich bacterial media. Similarly, preliminary experiments revealed there was an increase in antibiotic susceptibility of E. coli when cultured using RPMI compared to other rich bacterial media. The purpose of this study was to determine if the susceptibility is the result of down-regulation of the AcrAB-ToIC MDR pump during growth in RPMI. To determine this, we found the minimal inhibitory concentration (MIC) of different antibiotics targeting a variety of cellular pathways in two medias (LB and RPMI) using two different strains of *E. coli*. The wild type strain contained the AcrAB-TolC MDR pump, whereas the *AtolC* strain had a deletion of the pump. These two strains were chosen to determined that MICs were generally higher in the wild type strain compared to the *AtolC* strain. In addition, there are two independent pairs antibiotics that have a drastic increase or decrease in MIC, so it is not an AcrAB-TolC substrate and is not affected by media. In conclusion, we determined that the difference in susceptibility is not based solely on the AcrAB-TolC MDR pump and MIC testing with RPMI might reveal previously unknown susceptibilities potentially useful in a clinical setting.

Determining MICs via Microbroth Dilution

TolC MDR pump?

- Example (MIC) utilizing • *= MICs
- row.
- MIC=

ibility
nsitizes ia to rich
RPMI is
x Pump
multidrug resistance s the inner and outer
DR pump increases
ty of 35 compounds npounds increased in ains with deletion of
ar in RPMI between

of minimal inhibitory concentration determination microbroth dilution of antibiotics

 2-fold serial dilution of antibiotics across each

> the lowest that concentration inhibits growth.

Antibiotics Utilized i						
Antibiotic	BCP Category	Target				
Chloramphenicol	P1	50S Ribosome (inhibits peptidyl transferase)				
Kanamycin	P2	30S Ribosome (promotes mistranslation)				
Puromycin	Р3	50S Ribosome (premature chain termination)				
Naladixic acid	D1	DNA gyrase A				
Novobiocin	D2	DNA gyrase B				
Daunorubicin	D3	DNA intercalation				
Mitomycin C	D4	DNA crosslinker				
Vancomycin	C1	Binds D-Ala-D-Ala terminus				
Mecillinam	C2	Penicillin-binding proteins				
Cephalexin	С3	Penicillin-binding proteins				
Ampicillin	С3	Penicillin-binding proteins				
Nigericin	M1	K ⁺ ionophore				
СССР	M3	Protonophore				
Cerulenin	L1	Binds fatty acid synthase				

MIC Results for LB and RPMI

LB and RPMI MIC [◊] Results					
		Wildtype		ΔtolC	
	BCP category	LB	RPMI+10% LB	LB	RPMI+10% LB
Azithromycin	N/A	3.13	0.73	0.47	0.38
Chloramphenicol	P1	7.29	6.25	1.27	0.88
Kanamycin	P2	3.13	3.39	3.65	2.60
Puromycin	Р3	150.00	58.33	1.95	1.69
Naladixic acid	D1	4.69	54.17	0.23	7.33
Novobiocin	D2	216.67	>1000	1.35	5.47
Daunorubicin	D3	>20	>20	2.08	1.88
Mitomycin C	D4	4.00	0.44	0.03	0.01
Vancomycin	C1	>100	>100	>100	>100
Mecillinam	C2	0.78	50.00	0.46	1.38
Cephalexin	C3	7.29	20.83	10.42	26.56
Ampicillin	C3	93.75	177.08	25.00	15.63
Nigericin*	M1	>50	>50	>50	>50
CCCP*	M3	75.00	100.00	6.25	9.38
Cerulenin	L1	66.67	37.50	7.81	2.34

ivites in µg/mi unless otherwise indicated *MICs in µM

Wildtype vs *ΔtolC* and LB vs RPMI MIC Comparisons

MIC Comparisons (fold increase or decrease)**					¢
		LB		ΔtolC	
	BCP	wt∕∆ tol	wt	LB/RP	RPMI
	category	С	LB/RPMI	MI	wt∕∆ tolC
Azithromycin	N/A	6.7	4.3	1.2	1.9
Chloramphenicol	P1	5.7	1.2	1.5	7.1
Kanamycin	P2	-1.2	-1.1	1.4	1.3
Puromycin	Р3	76.8	2.6	1.2	34.5
Naladixic acid	D1	20.4	11.6	32.0	7.4
Novobiocin	D2	160.3	<-4.5	4.0	>183
Daunorubicin	D3	>9.6	N/A	1.1	>10.6
Mitomycin C	D4	144.2	9.1	2.7	42.0
Mecillinam	C2	1.7	64.0	3.0	36.4
Cephalexin	C3	-1.4	2.9	2.6	-1.3
Ampicillin	C3	3.8	-1.9	1.6	11.3
СССР	M3	12.0	-1.3	-1.5	10.7
Cerulenin	L1	8.5	1.8	3.3	16.0

**fold change=MIC1/MIC2 if <1 fold change =-(MIC2/MIC1)

- increase in MIC in RPMI.
- Mecillinam and cephalexin (PBP inhibitors).
- media.
- TolC pump.

1. Murakami, S., Nakashima, R., Yamashita, E., and Yamaguchi, A. (2002) Crystal structure of bacterial multidrug efflux transporter AcrB, Nature 419, 587-593. 2. Nonejuie, P., Burkart, M., Pogliano, K., and Pogliano, J. (2013) Bacterial cytological profiling rapidly identifies the cellular pathways targeted by antibacterial molecules, Proc Natl Acad Sci U S A 110, 16169-16174.

3. Kumaraswamy, M., Lin, L., Olson, J., Sun, C. F., Nonejuie, P., Corriden, R., Dohrmann, S., Ali, S. R., Amaro, D., Rohde, M., Pogliano, J., Sakoulas, G., and Nizet, V. (2016) Standard susceptibility testing overlooks potent azithromycin activity and cationic peptide synergy against MDR Stenotrophomonas maltophilia, J Antimicrob Chemother 71, 1264-1269.

A huge thank you to the Academic Connections program, to Dr. Komives for overseeing the Research Scholars program, and to the Pogliano Labs for welcoming me into the lab and allowing me the opportunity for this amazing experience.

>10 fold increase
2-10 fold increase
>10 fold decrease
2-10 fold decrease

Conclusions

• MICs are generally higher in wildtype vs $\Delta tolC$ (including for RPMI). • Two sets containing pairs of antibiotics which have similar targets showed an

• Naladixic acid and novobiocin (DNA gyrase inhibitors).

• Kanamycin is not a AcrAB-TolC substrate and MIC was unaffected by culture

• The difference in susceptibility in LB vs RPMI is not solely due to the AcrAB-

References

Acknowledgments

