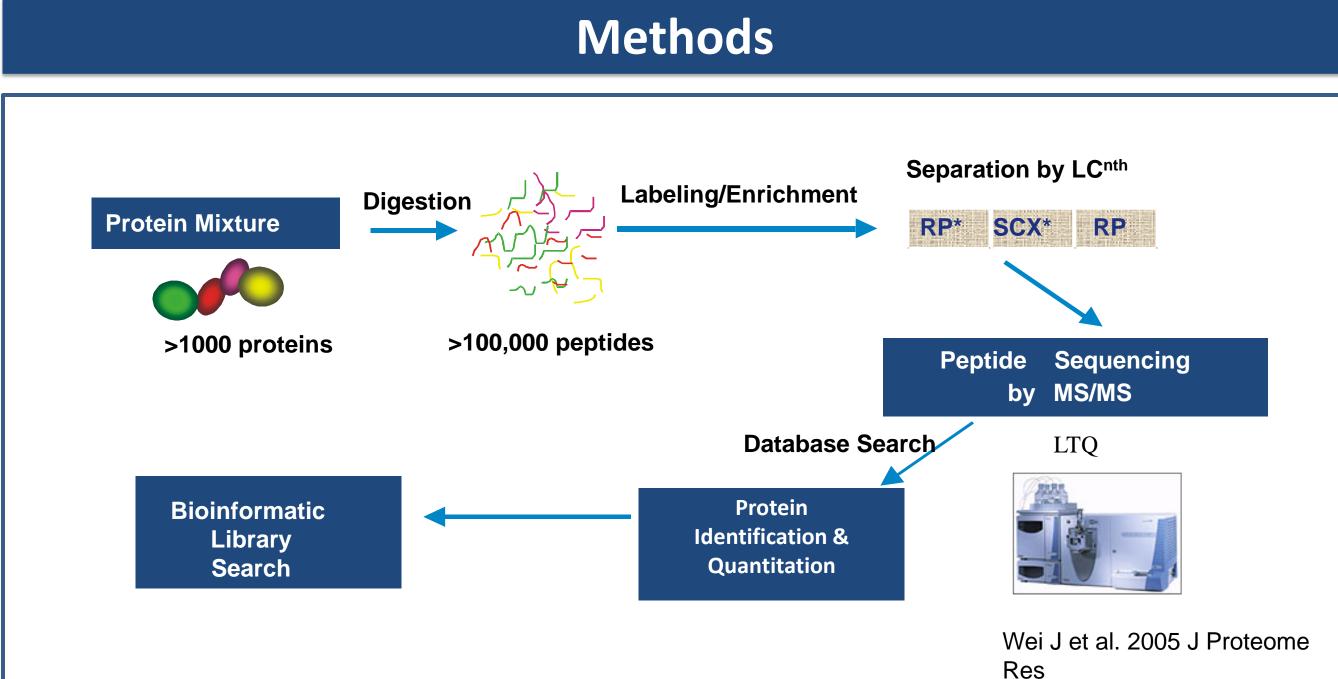


Identification of Purified Glyoxysome Proteins by Mass Spectrometry


Jerry Lin, Zhouxin Shen and Steven P. Briggs The Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman drive, La Jolla, California

Abstract

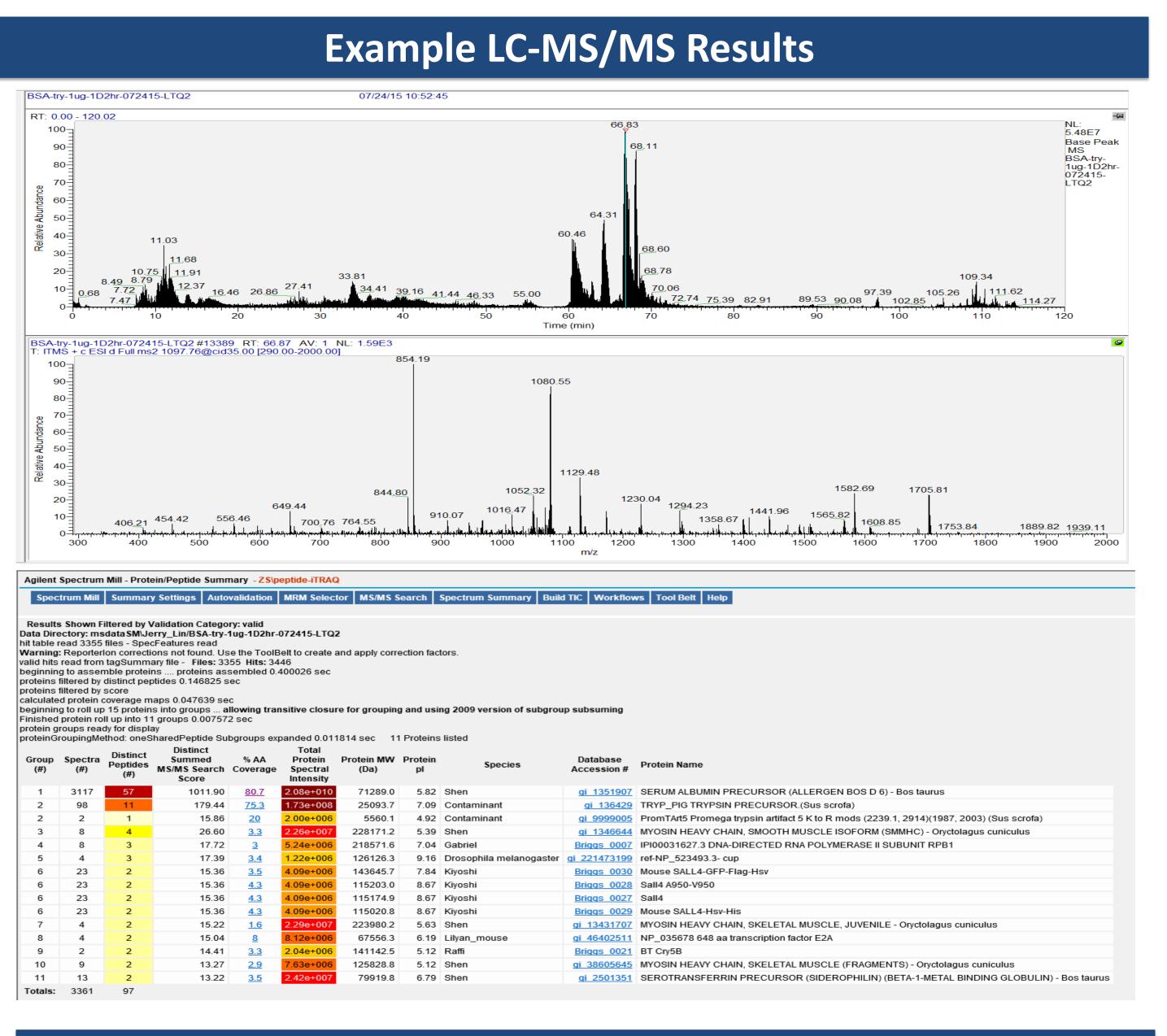
The purpose of this study was to construct a detailed and complete maize protein atlas. In maize cells, the glyoxysome, a specialized organelle, has the vital function of converting lipid storage into carbohydrates, which are needed for the growth of young plants. Our study constructed a protein atlas of 12,702 glyoxysome proteins. To our knowledge, this is the deepest proteome of any plant organelle. By comparing the abundance of proteins found in the glyoxysome and in the control tissue, enrichment values for each protein were calculated. The top 34 enriched proteins were considered to be glyoxysomal protein markers. While the majority of these proteins were previously known to be glyoxysome markers, 6 proteins were not previously known to be found in peroxisomes. These 6 proteins could be novel glyoxysome proteins.

The first step of oil breakdown in seeds is hydrolyzing triacylglycerides (TAG) into glycerol and fatty acids. The fatty acids then enter the glyoxysomes, where they undergo β -oxidation. The resulting Acetyl-CoA from β-oxidation enters the glyoxylate cycle, producing succinate, which is then transported to the mitochondrion and turned into malate for gluconeogenesis. Enzymes in above diagram were identified from maize protein figures our http://www.uky.edu/~dhild/biochem/21/fig10_68.png http://3.bp.blogspot.com/and jwVHy4biomQ/T5lrWScMlil/AAAAAAAAAAMM/QlZvNP6ZtvE/s1600/glyoxylatecycle.jpg

Glyoxysomes were purified from 3 day seedlings using ultracentrifgation in a sucrose gradient. Proteins were extracted, denatured, reduced, alkylated, and then digested by trypsin. Peptides were separated and analyzed using 2D nanoLC-MS/MS. Proteins/peptides were identified using Spectrum Mill. For relative quantitation, spectral counting was used. For protein functional analysis, we used MapMan ontology. Cytoscape was used to visualize the 34 marker proteins.

 $\longrightarrow CH_3 \longrightarrow C \longrightarrow S \longrightarrow CoA$ Acetyl-CoA

 \longrightarrow CH₃ \longrightarrow CH₃ \longrightarrow CoA Acetyl-CoA


Accession	Glyoxysome	Scutella	Glyoxysome enrichment	Scutella enrichment	MapMan Term
GRMZM2G086294_P02	198.8	0.0	100.0%	0.0%	'not assigned.unknown'
GRMZM2G099666_P01	251.5	0.1	99.7%	0.0%	'lipid metabolism.lipid degradation.beta-oxidation.acyl CoA DH'
GRMZM2G056369_P01	12283.0	80.8	99.3%	0.7%	'gluconeogenese/ glyoxylate cycle.isocitrate lyase'
GRMZM2G033491_P01	160.7	0.5	99.3%	0.3%	'amino acid metabolism.degradation.aspartate family.lysine'
GRMZM2G152442_P02	177.0	0.8	99.2%	0.4%	#N/A
GRMZM2G152417_P01	270.0	0.9	99.1%	0.3%	'lipid metabolism.FA synthesis and FA elongation.acyl coa ligase'
GRMZM2G056369_P02	1687.8	19.1	98.9%	1.1%	'gluconeogenese/ glyoxylate cycle.isocitrate lyase'
GRMZM2G305446_P01	377.3	5.0	98.7%	1.3%	'transport.Major Intrinsic Proteins.TIP'
GRMZM2G326550_P01	155.3	0.5	98.7%	0.3%	#N/A
GRMZM2G014136_P01	314.4	1.4	98.6%	0.4%	'lipid metabolism.lipid degradation.beta-oxidation.acyl CoA DH'
GRMZM2G103983_P01	349.5	5.0	98.6%	1.4%	'transport.Major Intrinsic Proteins.TIP'
GRMZM2G077415_P01	474.6	4.6	98.5%	1.0%	'gluconeogenesis.Malate DH'
GRMZM2G132903_P01	1374.5	6.1	98.3%	0.4%	'lipid metabolism.lipid degradation.beta-oxidation.multifunctional'
GRMZM2G059381_P01	265.4	1.1	98.2%	0.4%	lipid metabolism.FA synthesis and FA elongation.long chain fatty acid CoA ligase
GRMZM2G176546_P01	178.9	0.6	97.3%	0.3%	'lipid metabolism.FA synthesis and FA elongation.long chain fatty acid CoA ligase
GRMZM2G002630_P01	159.1	1.6	97.1%	1.0%	'misc.myrosinases-lectin-jacalin'
GRMZM5G862219_P04	136.6	0.2	96.7%	0.2%	'lipid metabolism.lipid degradation.beta-oxidation.acyl CoA DH'
GRMZM5G854613_P01	462.3	6.2	96.6%	1.3%	'lipid metabolism.lipid degradation.beta-oxidation.multifunctional'
GRMZM2G177511_P01	222.6	3.8	96.3%	1.6%	#N/A
GRMZM2G135588_P01	582.4	4.4	96.1%	0.7%	'gluconeogenese/ glyoxylate cycle.citrate synthase'
GRMZM2G459755_P01	208.8	2.8	96.0%	1.3%	'lipid metabolism.lipid degradation.beta-oxidation.multifunctional'
GRMZM2G445791_P01	136.4	3.5	95.7%	2.5%	'lipid metabolism.lipid degradation.beta-oxidation.acyl CoA DH'
GRMZM5G860137_P02	132.1	2.4	95.7%	1.8%	'amino acid metabolism.degradation.aromatic aa.tryptophan'
GRMZM2G150656_P03	207.5	7.8	94.5%	3.5%	'lipid metabolism.''exotics'' (steroids, squalene etc)'
GRMZM5G848768_P02	2704.6	108.6	94.4%	3.8%	'lipid metabolism.lipid degradation.beta-oxidation.acyl-CoA thioesterase'
GRMZM2G088212_P01	691.3	13.3	92.5%	1.8%	'redox.dismutases and catalases'
GRMZM2G001297_P01	108.1	0.1	92.1%	0.1%	'lipid metabolism.lipid degradation.beta-oxidation.acyl CoA DH'
GRMZM2G112238_P01	1013.7	71.4	92.1%	6.5%	'misc.myrosinases-lectin-jacalin'
GRMZM2G175423_P01	221.2	15.3	91.6%	6.3%	'minor CHO metabolism.sugar alcohols'
GRMZM2G472376_P02	243.9	16.3	90.9%	6.1%	'lipid metabolism.FA synthesis and FA elongation.acyl coa ligase'
GRMZM2G102183_P02	2195.5	221.7	90.8%	9.2%	'gluconeogenese/ glyoxylate cycle.malate synthase'
GRMZM2G101457_P01	105.7	1.3	90.6%	1.1%	'lipid metabolism.lipid degradation.beta-oxidation.enoyl CoA hydratase'
GRMZM2G102183_P03	2195.5	227.9	90.6%	9.4%	'gluconeogenese/ glyoxylate cycle.malate synthase'
GRMZM5G864319_P01	318.5	0.6	90.1%	0.2%	'lipid metabolism.lipid degradation.beta-oxidation.acyl CoA DH'

The top 34 enriched proteins in the glyoxysome are listed in the table above. Table includes the protein's accession, glyoxysome enrichment value, scutella (location in seed where glyoxysomes are found) enrichment value, and MapMan annotation. Protein must have enrichment of at least 90% among glyxoysome, chloroplast, and mitochondria to be considered protein marker for glyoxysome.

The protein network above uses isocitrate lyase as the marker protein for identifying the glyoxysomal proteins. Each node is labeled with a protein description and its accession. The size of the nodes corresponds with their abundance within the glyoxysome. The edge length corresponds with the glyoxysome enrichment value, computed by comparing the abundance within the glyoxysome and the abundance within the scutella. The blue nodes represent proteins previously known to be found in peroxisomes, and orange nodes represent those not previously known to be found in peroxisomes. Protein network visualized in Cytoscape.

Table of 3/ Glyovysome Protein Markers

Discussion and Conclusions

We succeeded in detecting 12,702 proteins in the glyoxysome, and 34 marker proteins. Of the 34 proteins identified, 6 proteins were not known to be found in peroxisomes. Of the 6 proteins, there were 4 different kinds: zein-beta, manose-binding lectin, GroEs-like zinc-binding alcohol dehydrogenase, and beta-tonoplast intrinsic protein. One possibility that could lead to these 6 proteins appearing in the list is contamination. The proteins could have copurified while in the sucrose gradient and were eluted with the rest of the glyoxysomal proteins. The other possibility is that these proteins are novel proteins. The zein-beta protein could be in the glyoxysome, acting as a scaffold protein to regulate pathways within the glyoxysome. The lectin proteins could be a form of passive protection against predators wanting the nutritional lipid storage. Alcohol dehydrogenase may help to recycle NAD+ within the glyoxysome, which is needed for fatty acid βoxidation. Future research will need to be done to determine whether these proteins are actually glyoxysomal, and if so, what their functions are.

. Graham, I. A. (2008). Seed storage oil mobilization. *Annual Review of Plant Biology*, 59, 115–42.

- http://doi.org/10.1146/annurev.arplant.59.032607.092938
- *Plant Physiology*, *150*(1), 125–43. http://doi.org/10.1104/pp.109.137703
- http://doi.org/10.1073/pnas.1319113110
- from http://www.wiley.com/WileyCDA/WileyTitle/productCd-0943088399.html

Sincerest thanks to the Academic Connections program and Professor Komives for directing the Research Scholars program, to Professor Briggs for welcoming me into his lab, to Zhouxin Shen for taking the time teach me, and to Laura Gates for helping me with everything.

References

2. Reumann, S., Quan, S., Aung, K., Yang, P., Manandhar-Shrestha, K., Holbrook, D., ... Hu, J. (2009). In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes.

3. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., ... Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–504. http://doi.org/10.1101/gr.1239303 4. Walley, J. W., Shen, Z., Sartor, R., Wu, K. J., Osborn, J., Smith, L. G., & Briggs, S. P. (2013). Reconstruction of protein networks from an atlas of

maize seed proteotypes. Proceedings of the National Academy of Sciences of the United States of America, 110(49), E4808–17

5. Wei J, et al. (2005) | SGD. (n.d.). Retrieved July 30, 2015, from http://www.yeastgenome.org/reference/S000082352/overview Wiley: Biochemistry & Molecular Biology of Plants - Bob B. Buchanan, Wilhelm Gruissem, Russell L. Jones. (n.d.). Retrieved July 30, 2015,

Acknowledgments

