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Nuclear factor κB (NFκB) is responsible for the regulation of genes implicated in tumor suppression, inflammatory response, development, and apoptosis. When NFκB fails to regulate gene expression, diseases such as cancer, chronic inflammation, and 
Alzheimer’s result. NFκB is regulated by its inhibitor, IκB, one of which is IκBβ. Like its more prominent counterpart IκBα, IκBβ prevents gene expression by remaining bound to NFκB in the cytoplasm and masking its nuclear localization sequence (NLS), stopping 
NFκB from entering the nucleus. Unlike IκBα, however, not all IκBβ immediately masks the NLS when associating with NFκB. Thus, some IκBβ remains bound to NFκB in the nucleus, inhibiting IκBα’s ability to bind to NFκB and prolonging gene expression. In this 
way, IκBβ both inhibits and activates gene expression.1  Until recently, the mechanism by which IκBβ fulfils both these functions were unclear. In vivo work in the Sankar Ghosh lab at Columbia University has shown that phosphorylated IκBβ can regulate NFκB 
binding to DNA; however, hypophosphorylated IκBβ forms an NFκB:DNA:IκBβ complex insusceptible to regulation by IκBα.  Here we present progress towards confirming that phosphorylation of IκBβ is required for IκBβ-mediated dissociation of NFκB from DNA.  
We have restored a mutated plasmid to express wild type IκBβ and introduced a phosphomimic mutation (S346D) via polymerase chain reaction (PCR). We have also recombinantly expressed and purified Mus musculus IκBβ and p65 NFκB and have laid the 
groundwork for kinetic assays to investigate the significance of the phosphorylation state of IκBβ in NFκB regulation. 

References 
1. S. Ghosh et al. IκBβ acts to both inhibit and activate gene expression at different stages in the inflammatory response Nature 

(2010). 
2. K. Tran, D.T. Distinct Functional Properties of IκBα and IκBβ Molecular and Cellular Biology (1997). 

 

Future Directions 
Having purified nearly all the necessary proteins (save the S346D mutant IκBβ), we plan to 
begin kinetic assays using stopped flow fluorescence to measure the relative rates of wild type 
IκBβ-mediated dissociation and of S346 mutant IκBβ-mediated dissociation of NFκB from DNA. 
This will allow us to determine whether phosphorylation of IκBβ is crucial to IκBβ’s functionality. 
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IκBs regulate NFκB 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IκBβ is a six ankyrin repeat protein with a C-terminal PEST sequence and an intrinsically 
disordered linker region between AR3 and AR4.  The IκBβ PEST sequence gets 
phosphorylated in vivo by a casein kinase II-like protein, thus increasing the negative charge 
on the PEST sequence.2 We hypothesize that the negatively charged PEST sequence is 
crucial to IκBβ-mediated dissociation of NFκB from DNA by eletrostatically repelling DNA from 
the IκBβ:NFκB complex. By contrast, hypophosphorylated IκBβ is unable mediate dissociation.  
We plan to test this by introducing a phosphomimic mutation (S346). 
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Figure 1.  Canonical 
IκB’s regulation 
of NFκB. 

Fluorescence Anisotropy 
Given a constant concentration of fluorescently labeled DNA (5 nM FITC DNA), as the 
concentration of p65/p65 increases, the tumbling speed of the molecules in solution decreases. 
This indicates binding between DNA and p65/p65.  
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 Figure 11.  Fluorescence polarization analysis of 
varying concentrations of p65/p65 
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Protein identification 
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Figure 10. Peptide coverage of IκBβ collected on the Synapt G2S 
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We used a Synapt mass 
spectrometer to 
perform a peptide 
digestion in order to 
identify lanes 20 and 
21 from the MonoS gel 
as IκBβ.  

We performed PCR along a gradient of melting 
temperatures from 71°C to 81°C to repair a 
mutated version of the pET11a plasmid 
containing the IκBβ gene. We then ran an 
agarose gel to determine the temperatures at 
which the primer annealed most successfully 
and adjusted future gradients accordingly.  
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Figure 2. Agarose gel of melting temperature gradient. 
The subtle bands in the 3rd and 4th lanes indicate that 
temperatures 70.4°C-72.0°C were most successful.  

We then transformed the repaired plasmid into 
DH5α E. coli cells, which produced more of 
this plasmid. 

Protein expression and purification 
 
Expression 
We transformed BL21 E. coli with the pET11a plasmid encoding the genes for IκBβ and p65.  
We grew these cells to OD600 = 0.6 and induced protein expression with 0.1 mM IPTG to 
express IκBβ and NFκB.   
 
Purification 
We isolated both proteins from the cells grown by: 
1) Centrifuging the cells at 4,000 rpm for 20 min 
2) Resuspending the pellets in lysis buffer 
3) Sonicating the cellular resuspension 
4) Centrifuging the result of the sonication at 12,000 rpm for 45 min 
5) Running various columns with the resulting cell lysate 

 
Columns: 
 
IκBβ = negatively charged (pI = 4.71) 
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 Figure 3. Positively charged affinity 
column. Negatively charged 
columns function inversely, while 
Size Exclusion columns filter 
molecules based on size. 
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Figure 4. SDS-PAGE of IκBβ HLQ fractions. 
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Figure 5. SDS-PAGE of IκBβ S200 fractions. 

Figure 6. Chromatogram of IκBβ S200 fractions. 
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Figure 7. SDS-PAGE of p65/p65 SP Sepharose fractions. 
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Figure 9. Chromatogram of p65/p65  
MonoS fractions. 

Figure 8. SDS-PAGE of p65/p65 MonoS fractions. 

Sequence and Structure of IκBβ 
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