
•The gatekeeper residue (M120) was able to restore kinase 
activity (Figure 6C). 
•Part of the expressed PKA-C double mutant went into the 
insoluble fraction (pellet (Figure 7B)). 
•Some of the expressed PKA-C double mutant was lost 
during the loading process onto the Ni-NTA affinity column 
(flow through (Figure 7B)). 
•None of the expressed PKA-C double mutant was lost 
during the 10 mM and 50 mM imidazole washes. 
•A significantly pure PKA-C double mutant was eluted from 
the Ni-NTA affinity column (elution (Figure 7B)). 
•The entire PKA-C double mutant elution precipitated 
during dialysis. 
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The Architecture of the Kinase Core 

Non-Canonical R-Spine 

Protein kinases are highly regulated enzymes that phosphorylate a serine, threonine, or tyrosine in about 30% of human proteins and therefore, are able to regulate several cellular and metabolic processes 
[1]. There are over 500 Eukaryotic Protein Kinases (EPK) identified to date that are divided into seven subfamilies based on their sequence and function. All EPKS have a highly conserved core that consists 
of two lobes [2]: a small N-terminal lobe (N-lobe) and a larger C-terminal lobe (C-lobe). The EPK core is organized around three major elements: a large hydrophobic αF-helix in the middle of the C-lobe 
and two hydrophobic ensembles termed “spines”: the Regulatory (R) spine and the Catalytic (C) spine [3,4]. The accurately aligned R-spine is a non-linear structural motif that connects the N- and C-lobes 
in active EPKs. Recent experiments have demonstrated that disrupting mutations made to the R-spine of the constitutively active cAMP dependent protein kinase (PKA) affect the kinase activity. PKA is 
used as a model to understand the role of each R-spine residues in the kinase activity of all EPKs. 
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Phospho-Transfer 

What allows this Dynamic Nature? 

Figure 4: The R-spine was known to consist of only four residues. But, 
further computational analysis (LSP) has shown that there are other 
hydrophobic residues (M118, M120, V104). (A) Structural model of the non-
canonical R-spine. (B) Cartoon model of non-canonical spine.  
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Figure 1: The catalytic core of all EPKs have highly conserved structural 
motifs. The glycine rich loop (yellow) and the C-helix (gold) from the N-lobe 
and the activation loop (red and green), the catalytic loop (orange), and the αF-
helix (olive) from the C-lobe. ATP binds between the N- and C-lobes and the 
substrate binds to the C-lobe. 

Note: Amino acid numbering is specific to PKA. 

Preliminary Data 

• Buffer: 50 mM KH2PO4, 20 mM Tris-HCl, 100 mM NaCl, 5 mM B-
mercaptoethanol, pH 8.0 

• Dialysis Buffer: 20 mM KH2PO4, 20 mM KCl, 25 mM DTT, pH 6.5 
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1. Do L106 and M118 have the capability to 
restore kinase activity? 

• To answer this question, the same experimental 
procedures will be carried out with the different 
constructs shown in Figure 8.  

2. Is the alignment of the R-spine restored? 
• To answer this question. X-ray crystallography will be 

utilized to solve the structure of all three mutants 
(Figure 6A, 8A & 8B). 

3. Can rearrangement of these residues be 
utilized to design better drugs??? 

Role of the Gatekeeper 
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Figure 7: Protein Preparation of Gatekeeper R-Spine. (A) 
Flowchart of steps taken from creating the double mutant to 
purification of this construct. (B) Coomassie stained gel taken 
during different stages of the protein purification process of  PKA-
C double mutant. 
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Figure 2: Phospho-Transfer in EPKs using PKA as a model. (A) The adenine 
ring of ATP completes the catalytic spine as it fits into the activation cleft. (B) 
The glycine rich loop (yellow) positions ATP and E91 (cyan) forms a salt bridge 
with K72 (cyan) that hydrolyzes the γ−phosphate. (C) The γ−phosphate is 
transported through the magnesium ions, that are positioned by ATP and D184 
(blue) form the activation loop (DFG motif). (D) Substrate (green) is positioned 
to receive the γ−phosphate by the catalytic loop (HRD motif) (orange).  
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Figure 3: R-spine - Local spatial pattern (LSP) alignment allowed the 
detection of an aligned hydrophobic spine in active EPKs [5] which has 
provided a widely accepted framework for the mechanism [6] of EPK activity. 
These four residues include L106 from β4, L95 from the αC helix, F185 from 
the DFG motif from the activation loop, and Y164 from the H/YRD motif from 
the catalytic loop. 
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Figure 5: Breaking the R-spine inactivates PKA Catalytic (C) Subunit. 
(A) Trans-auto phosphorylation site T197 on the  activation loop and cis-
autophosphorylation site S338 on the C-tail. (B) R-spine broken by mutating 
L106G, M118A, and M120A. (C) Western Blot of wild type PKA-C and 
broken R-spine construct on both auto phosphorylation sites. 

Figure 6: PKA-C R-spine completed by gatekeeper residue (M120). (A) 
Cartoon representation of gatekeeper R-spine. (B) Sequence of double mutant 
L106G and M118A in comparison to wild type PKA-C. (C) Western blot 
showing restored kinase activity of PKA-C double mutant on  both auto 
phosphorylation sites. 
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Figure8: Alternate conformations to the R-spine to test in 
future. (A) Cartoon model of L106 R-spine. (B) Cartoon model 
of M118 R-spine. 
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