
Next, enriched DNA-interacting proteins in the studied cells determined from the pValues were 
checked back to the motif counts determined in the PSSM data. Because simply determining the 
pValue will return false-positives (since if a single count appears in the foreground while there is 
none in the background, the read will be deemed significant), we calculated the number of 
appearances of each PSSM for each promoter region of each cluster and determined to reject any 
motifs with high pValues that did not appear in at least 30% of the promoter regions, an arbitrarily 
determined cutoff. The remaining motifs with significant pValues were compared with RNA-seq 
data and filtered to determine the actual associated proteins binding in each histone modification 
cluster. Comparing the pValues of the proteins with actual RNA-seq data is crucial to determining 
whether a TF or other DNA-binding protein is ubiquitously expressed or whether it is cell-specific. 
RNA-seq is a method that sequences cDNA that reflects mRNA transcribed in the cell, and hence, 
the actively transcribed gene. RNA-seq data was obtained from the UCSC ENCODE project using 
data specifically from this URL 
(http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeCaltechRnaSeq/). This 
study used RPKM data from the first repetition of each experiment as data input. Unfortunately, 
due to the unavailability of data for all of the cell types being studied, only 4 of the 7 cell types had 
RNA-seq data. We thus localized our study of protein-DNA interaction with histone modification 
patterns to those 4 cell types. RNA-seq enrichment is related to both the length of the transcript 
and concentration of enrichment. RPKM is a method of quantifying the transcription level to “reads 
per kilobase of exon model per million mapped reads” (RPKM). This is a measure of read density 
that allows a simple comparison of transcription levels relative to other RNA-seq data and other 
reads within the same file. A quick plot of the frequency of enriched expression based on the 
RPKM values demonstrated that the data followed a rough Poisson Distribution. Thus, using R, we 
determined p-Values for each transcribed gene using the Poisson distribution function to 
determine the probability that any other gene would be more highly expressed that the gene in 
question.  A strict pVal cut of 10^-3 was used to take only the most highly expressed genes. After 
cross-comparing the filtered RNA-seq genes with the TFs and other proteins determined from 
motif analysis a list was found for the proteins that appeared in both data sets for each histone 
modification cluster to be the set of DNA-interacting proteins at the cell’s promoters in the cluster. 

The Role of Histone Modification Patterns in Transcription Factor Binding and Gene Expression
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The Epigenome: Functions of a Landscape

The Missing Link: Histone Modification Patterns 
and Transcription Factors

Epigenetics is the study of differences in the phenotype of a cell or organism that do not involve 
changes in the nucleotide sequence of DNA. Epigenetic mechanisms include histone modification, 
DNA methylation, and small and non-coding RNAs, all of which form elements of chromatin 
signatures that interact with transcription factors to regulate gene expression patterns, actively play 
a role in cell development, differentiation, and identity

In this study, histones were the focus of our examination of epigenetic elements. Histones are 
proteins comprised of a globular domain and a tail of polypeptides, and they form octamer 
aggregates called nucleosomes which play an integral role in chromatin formation and DNA 
packing. Modifications of histone N-terminal tails include methylation, acetylation, and 
phosphorylation, and combinations of these modifications have been found to affect gene 
expression levels by affecting chromatin packing and chromatin DNA-interactions, forming the 
basis of what is known as the histone code hypothesis. Recent findings have demonstrated the 
relationship between chromatin modifications at enhancers as they relate to cell-type-specific gene 
expression, and recently, histone modification patterns have been used in conjunction with other 
methods to predict putative enhancer sites. However, the precise relationship between histone 
modification patterns and the protein elements that transcribe genes remains unclear, and a 
systematic and widespread search for the relation between such elements and histone modification 
patterns has yet to be attempted.
One such protein element is the transcription factor (TF). Transcription factors are proteins that 
bind to RNA Polymerases and functional elements in the DNA to facilitate RNA transcription and 
ultimately help to dictate gene expression. They often interact with each other and the DNA to form 
complexes around transcription start sites (TSSs), and other functional elements in the genome. 
Indeed, transcriptional programs comprised of networks of TFs have been correlated to differential 
gene expression, for by binding to transcription factor binding sites (TFBSs) in varying 
combinations of complexes, TFs have proven to be critical to regulating gene expression in cells 
and carrying out cell-specific transcription. Unfortunately, the mechanisms by which TF networks 
and other DNA associating proteins regulate gene expression are not well studied, partly due to a 
lack of information regarding TFBSs, prompting the ongoing search for motifs. One such protein 
element is the transcription factor (TF). Transcription factors are proteins that bind to RNA 
Polymerases and functional elements in the DNA to facilitate RNA transcription and ultimately help 
to dictate gene expression. They often interact with each other and the DNA to form complexes 
around transcription start sites (TSSs), and other functional elements in the genome. Indeed, 
transcriptional programs comprised of networks of TFs have been correlated to differential gene 
expression, for by binding to transcription factor binding sites (TFBSs) in varying combinations of 
complexes, TFs have proven to be critical to regulating gene expression in cells and carrying out 
cell-specific transcription. Unfortunately, the mechanisms by which TF networks and other DNA 
associating proteins regulate gene expression are not well studied, partly due to a lack of 
information regarding TFBSs, prompting the ongoing search for motifs.

ChromaSig: Histone Modification Pattern Extraction

Histone Modification Heatmap of ChromaSig 
Clusters Generated from Treeview
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In order to elucidate the relation between histone modifications and DNA associating proteins like 
TFs, in this study, histone modification clusters were analyzed around known promoter sites in 7 
different cell lines across eight different histone modifications. We hypothesized that functional 
elements and genes possessing similar roles in the cell would have similar histone marks, and that 
these clusters of similar genomic elements would be bound by the same TFs and DNA-binding 
proteins.  An analysis of these clusters of promoters and enhancers and DNA-interacting protein 
binding was performed to systematically determine whether histone patterns or clusters of genes 
possessing similar patterns could elucidate functions of DNA-binding proteins or corroborate known 
relationships. Ever since the discovery of the epigenome, studying the interactions between 
epigenomic elements and underlying DNA has proven to be critical to understanding cell 
differentiation and specificity, and by combining histone modification mapping, transcription factor 
motif data, and computational tools, we hoped to shed light upon the link between epigenetics and 
protein binding in determining cell identity cell-specific gene expression.

Recent studies have characterized unique histone modification patterns at functional genomic 
regions such as promoters and enhancers, and because DNA interacting proteins often bind to these 
genomic elements, this study focuses on the relationship between known motifs at these elements in 
humans and histone modifications. A list of known promoter regions was downloaded from the 
UCSC table browser, an open source database that retrieves data and DNA sequences associated 
with specific genes or functional elements in the DNA. The assembly used was from the March 2006 
hg18 selection, and the list of promoters was garnered from the track of UCSC genes. The 
promoters were rounded to the nearest 100 base pair in order to accommodate the ChIP-seq data of 
histone modifications we downloaded later, which was of a 100bp resolution. ChIP-Seq is a 
chromatin immunoprecipitation technique that can find the enrichment of histone modifications on a 
genome-wide scale.

ChIP-seq functions by precipitating out the proteins of study that bind to DNA using highly specific 
antibodies (ChIP). A library of the resulting bound DNA nucleotides is complied and sequenced, 
providing data for enriched bound locations of the proteins (seq). Because ChIP-seq maps of histone 
modifications are becoming widely available, ChIP-seq data was thus the natural choice for this study 
to generate modification cluster maps around promoter locations. In order to systematically search 
for the interplay between histone modification patterns and DNA associated protein binding motifs, 
and because these patterns are often cell specific, we studied seven different cell lines, Gm12878, 
Hmec, Hsmm, Huvec, K562, Nhek, Nhlf, and eight modification patterns (H3K27me3, H3K27ac, 
H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K9ac, and H4K20me1) to gain a broader view of 
the role of chromatin in motif discovery in various environments by extracting ChIP-seq histone 
modification patterns from the ENCODE project’s ChIP-seq data (freely available at 
http://hgdownload.cse.ucsc.edu/ goldenPath/hg18/ encodeDCC/wgEncodeBroadChipSeq/) 
downloaded from the UCSC Genome Bioinformatics Browser. In particular, data from the Broad lab 
was used in this study in the .tagAlign format of the files. Next, the files were input into a program 
called ChromaSig, an unsupervised learning method that locates commonly occurring chromatin 
signatures in the data. The ChromaSig package (available from the STAR Pipeline 
http://wanglab.ucsd.edu/star/ pipeline.php) includes a program called PreChromaSig, a Perl 
language program that performs data normalization on the ChIP-Seq files, a necessary step because 
the absolute tag counts for the ChIP-Seq data varies widely, which may present an inaccurate picture 
of the histone modification landscape. The ChromaSig program scans the genome-wide histone 
maps to locate enriched regions of chromatin patterns then creates a seed pattern based on the 
maps, then finally enumerates each locus to the seed and aligns it with the model to either reject the 
locus if poorly aligned or update the motif if the locus has a similar alignment The output gave 114 
unique clusters of similar histone modification reads across 13914 unique promoter locations. We 
next used Treeview, a freely available software tool that we used to generate heatmaps of our 
histone clusters for visualization. The generated heatmaps provide a visual model of the histone 
modification patterns in a 10 kilo base pair region around each promoter location.

Here, 114 histone modification 
patterns are shown across 13914 
Unique promoter regions in the 
human genome. Every eight 
columns represents a different cell 
line (Gm12878, Hmec, Hsmm, 
Huvec, K562, Nhek, Nhlf) and each 
of the eight columns represents a 
histone modification (H3K27ac, 
H3K27me3, H3K36me3, H3K4me1, 
H3K4me2, H3K4me3, H3K9ac, and 
H4K20me1). Every column is a 
10kb region around the TSS of 
each promoter region. Similar 
histone modification patterns 
across all studied cell lines 
suggests a similarity in the 
epigenetic landscape around 
promoters.

Results

RNA-seq data: RPKM frequencies

Interplay between Histone Modification Patterns 
and Transcription Factor Binding
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Numerical ID of RNA-seq data point

RPKM Cumulative Distribution Function 
Demonstrates Poisson Distribution

Motif Analysis and Gene Ontology
In order to determine whether specific epigenetic patterns are related to DNA-binding proteins 
and motifs, the approach was two-fold. First, determine significantly enriched binding motifs at 
promoters by performing motif analysis, and combining it with RNA-seq data to find transcription 
factors that are ubiquitous and cell specific in each cluster. Second, perform gene ontology 
analysis to computationally determine the function of those proteins in each histone cluster. In 
the former case, a list of histone modification patterns sites which form the chromatin clusters 
determined from ChromaSig was used. Position specific scoring matrices (PSSMs or PWMs) 
were obtained for a list of 1169 known motifs gathered off of 5 motif databases, bulyk, hPDI, 
Jaspar, Uniprot, and TRANSFAC enriched in each of the promoter and enhancer regions. The 
PSSM is a commonly used method to measure motifs in the DNA, and in this study, each 
promoter region determined from ChromaSig was scanned in silico for motifs that would suggest 
the presence of that TF or other protein. The PSSM data was then complied and input into R, 
freely available software which was used for statistical analysis and graphing. R was employed in 
this study due to its immediate availability and ease of use.  The program was used to obtain the 
hypergeometric distribution result of each motif from the PSSM data in each cluster. The group of 
study for each calculation was the sum of all the PSSM scores representing each motif for all the 
promoters of each cluster, and the background was designated as the sum of motifs in all other 
histone cluster locations.  A log-odd ratio value between 1 and 0 for each motif in each cluster, 
with numbers closer to zero suggesting greater significance of that particular motif in that cluster. 
An arbitrary and strict cutoff p-Value of 10^-5 was determined to obtain the highest prevalent 
motifs in each cluster which would correlate to the statistically most significant binding of the 
associated protein in the cluster. 

Our results validated the hypothesis that each cluster genes possessing similar histone marks also 
possessed similar functions. While a large portion of clusters had similar functions relating to transcription 
and gene expression, within each cluster, the functions were largely the same. For instance, in cluster 16 
(below), the GO terms revealed that besides the broad terms like “cell” and “biological process”, the cluster 
was mainly involved in cell adhesion, binding, and reproduction to a small extent. Indeed, the GO terms also 
discovered that the DNA-binding proteins in each cluster also had largely similar functions. Thus, by 
comparing the functions of the cluster’s genes, histone patterns, and protein functions, both novel insights 
and known relationships could confidently be drawn. During our analysis, to discover the specific functions 
of individual DNA-binding proteins, the Uniprot database was used, an open database that provides 
annotated and curated protein sequence and functional information.
Eighty unique DNA-binding proteins to associate across the 114 clusters of promoters in differing 
combinations for each cluster (Insert supplemental table).These combinations represent the most 
statistically significant and highly expressed DNA-binding proteins in each cluster. These clusters, the 
associated genes, and the associated DNA-binding proteins were compared to find any significant 
relationships between the data. From the analysis, four distinct categories of interactions were discovered. 
(1) Proteins that bound ubiquitously across all cell types for multiple clusters. (2) Proteins that showed cell 
specificity but were expressed ubiquitously across histone patterns. (3) Cell specific histone patterns that 
were demonstrated for proteins that bound over several clusters. (4) Cell specific histone modification 
patterns that correlated with cell specific proteins and transcription factors. 

For example, we examined our data to search for cell-specific proteins that would be expressed in 
a single cluster of genes. Although cell specific proteins binding to promoters would be rare, we did indeed 
find a few DNA-binding proteins that were involved with unique clusters. In general, our results 
demonstrated a strong corroboration between the protein and cluster functions, demonstrating a strong 
correlation between histone patterns and the associated genes and protein function.

While the study accurately described the binding of CD59 in the cluster and the similar functions between 
CD59 and the associated genes, it is curious to note the presence of CD59 (and other proteins determined in 
this category) in the nucleus of the cell. The RPKM data clearly shows its high expression density in the 
cluster, yet the high significance of the binding motif given by the pValue coupled with the obvious histone 
pattern difference may suggest that CD59 has an unknown chromatin modification function, though this 
statement will require future research to corroborate. The other proteins that are typically associated with 
functions in the membrane or cytosol may also have unknown functions in the nucleus that need further 
investigation.
Our data thus supports the idea that histone clusters and the associated  genes exhibit distinct and 
significant  functions that are related to the DNA-binding proteins/. However, how the proteins relate to the 
extent of gene transcription remains unknown, and an analysis of the RNA-seq data of the underlying genes 
remains an area of future work. 

Gene Ontology

These corresponding TFs were analyzed through Gene Ontology, a bioinformatics database that 
seeks to annotate gene data and provide tools to analyze that data. One such tool, known as the 
Ontologizer, was employed to find significant GO terms for each of the promoter clusters and the 
corresponding proteins in each cluster. GO terms are properties of gene products that are tagged 
onto specific search terms like TFs and genes, and this study hypothesized that clusters of 
promoters or enhancers represent similarly acting or functioning genes, thus possessing similar 
GO terms. The Ontologizer is a tool that performs enrichment analysis of input genes and outputs 
significant GO terms associated with the input genes by using a model-based gene set analysis 
(MGSA) to search all the associated GO terms and categories at once for the input in a Bayesian 
network. This approach thus addresses the categorical overlap inherent in many of the GO terms 
to reduce excessive returns of correlated GO terms. Next, using Perl, scripts were created that 
processed the data to generate tables for heatmap input. Three heatmap tables were created. One 
heatmap demonstrates the TF binding occurrences in each cluster as a fraction of all the 
promoters it bound to over the total number of promoters in the cluster. A second heatmap displays 
the significance of the binding enrichment by plotting the pValues determined for each TF 
expressed in each of the four RNA-seq cells in the cluster. A third heatmap demonstrates 
expression level by plotting the normalized RPKM value for the expressed TF in each of the cell 
types per cluster. 

Proteins that bind in cell specific 
patterns in a single cluster

cluster 
number cluster function protein function

CAT* 23 Lipid and small molecule metabolic processes Calcium Transport Protein

CD59* 25 Cell mediated signal response and reception Glycoprotein
DUSP22 71 Sensory Perception Signaling Pathway Protein
HHEX 18 Proteoglycan Synthesis Homeobox Protein

HNRPA1 101
Transcription and signaling pathways and stimulus 
reception Ribonucleoprotein

IRF6 23 Lipid and small molecule metabolic processes DNA-binding Transcription Factor

POLE3 25 Cell mediated signal response and reception DNA Polymerase Subunit
RARG 6 Transcriptional Regulation Retinoic Acid Receptor

SUCLG1* 68 Cell adhesion, binding, and reproduction Protein involved in Aerobic Respiration

TRMT1 68 Cell adhesion, binding, and reproduction tRNA processing

TSN 68 Cell adhesion, binding, and reproduction DNA Recombination

UTP18 38 Transcription and Transcriptional Regulation Small Nucleolar RNA-associated protein

Summary Table

*Note: The known location for these proteins is outside the nucleus, suggesting they may be false positives, or that there may be an unknown function for these proteins that 
may potentially exist with these DNA-binding proteins.

One such example was the protein CD59. The study both corroborated known associations and suggested 
new functions for this protein. The data was indeed accurate in reflecting the presence and function of CD59, 
a cell surface receptor glycoprotein and membrane attack complex inhibition factor, for GO term analysis 
reveals that the cluster (cluster 25) is indeed involved in cell mediated signal response and reception, 
relating to the function of CD59. Additionally, the histone modification heatmap demonstrated how the 
histone landscape also demonstrated the increased binding density of CD59, for both RPKM data and the 
histone marks reflected its cell specificity in binding only to the genomes of HUVEC and NHEK cells. This is 
clearly visible in the histone heatmaps, which demonstrate how only HUVEC and NHEK exhibit the active 
acetylation and H3K4me3 while Gm12878 and K562 show repressive marks in the cluster.

Gm12878
H3K27ac   H3K27me3   H3K36me3   H3K4me1   H3K4me2   H3K4me3   H3K9ac   H4K20me1
|--10kb--|

Huvec
H3K27ac   H3K27me3   H3K36me3   H3K4me1   H3K4me2   H3K4me3   H3K9ac   H4K20me1

K562
H3K27ac   H3K27me3   H3K36me3   H3K4me1   H3K4me2   H3K4me3   H3K9ac   H4K20me1

Nhek
H3K27ac   H3K27me3   H3K36me3   H3K4me1   H3K4me2   H3K4me3   H3K9ac   H4K20me1

pValues for 
cluster 25 Gm12878 Huvec K562 Nhek
ABCF2 N/A N/A 4.24E-08 N/A

CD59 N/A 1.09E-102 N/A 1.67E-20
CDK2AP1 N/A 5.65E-34 0.000171 N/A
FAM127B N/A 3.53E-08 N/A N/A
GRHPR N/A 3.53E-08 N/A 6.15E-05
MTHFD1 5.75E-11 N/A 5.48E-17 N/A
PIR N/A 1.84E-05 N/A N/A
POLE3 N/A 0.000381 6.04E-12 N/A
RAB7A 3.36E-12 3.79E-36 1.14E-15 6.08E-101
SF1 3.28E-09 N/A 1.30E-08 N/A

SOD1 1.75E-15 9.76E-62 2.31E-109 1.67E-20
STAT3 4.51E-06 N/A 2.32E-11 N/A
STAT5A N/A N/A 1.85E-50 N/A
STAT6 5.02E-22 8.09E-06 N/A N/A
TAF9 5.75E-11 N/A 8.83E-33 N/A
TIMM44 N/A N/A 1.12E-09 N/A
TMSL3 N/A 2.30E-13 N/A N/A
U2AF1 N/A 2.13E-28 0.000171 N/A
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